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Dynamics of stable viscous displacement in porous media
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We investigate the stabilization mechanisms of the invasion front in two-dimensional drainage displacement
in porous media by using a network simulator. We focus on the process when the front stabilizes due to the
viscous forces in the liquids. We find that the capillary pressure difference between two different points along
the front varies almost linearly as a function of height separation in the direction of the displacement. The
numerical results support arguments that differ from those suggested earlier for viscous stabilization. Our
arguments are based upon the observation that nonwetting fluid flows in loopless strands~paths! and we
conclude that earlier suggested theories are not suitable to drainage when nonwetting strands dominate the
displacement process. We also show that the arguments might influence the scaling behavior between the front
width and the injection rate and compare some of our results to experimental work.

PACS number~s!: 47.55.Mh, 47.55.Kf, 07.05.Tp
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I. INTRODUCTION

Immiscible displacement of one fluid by another fluid
porous media has important applications in a wide range
different technologies. Most often mentioned is hydrolo
and oil recovery. From a theoretical point of view, the d
placement process is very complex and hard to describ
detail. Especially, much attention has been paid to the
variety of displacement structures that is observed. The
placement structures are found to depend strongly on fl
properties such as viscosity, interfacial tension, fluid fl
rate, and wettability@1–4#.

In drainage the primary process is the displacement o
wetting fluid by a nonwetting fluid in porous media. Co
sider a two-dimensional~2D! horizontal displacement of a
less viscous fluid by a more viscous fluid. At high injectio
rates the front developing between the invading and defe
ing fluid, is known to stabilize@3#. In contrast, at extremely
low injection rate the invading fluid generates a growi
cluster similar to the cluster formed by invasion percolat
~IP! @5–8#. The displacement is now controlled solely by t
capillary pressure, that is, the pressure difference betw
the two fluids across a meniscus.

In this paper we address the question of how the invas
front stabilizes when no gravity forces are present~2D hori-
zontal displacement!. To do this, we have developed a ne
work model that properly simulates the dynamics of the c
illary pressures due to the menisci along the front as wel
the viscous pressure buildup in the fluids. From the simu
tions we have calculated the capillary pressure differe
DPci between menisci along the front separated a dista
Dh in the direction of the displacement. Also calculated
the capillary pressure in the orthogonal directionDPc' , that
is, the capillary pressure between menisci at the same he

*Also at Norwegian University of Science and Technolog
N-7491 Trondheim, Norway.
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above the inlet but separated a horizontal distanceD l ~see
Fig. 1!. Simulations show that assuming a power law beh
ior DPci}Dhk, our best estimate of the exponent for a wi
range of injection rates and different fluid viscosities isk
51.060.1. This is a surprising result because the visco
force field that stabilizes the front is nonhomogeneous du
trapping of wetting fluid behind the front and to the fract
behavior of the front structure.

We also present arguments being supported by the
merical evidence thatk.1.0. The arguments are based up
the observation that nonwetting fluid displaces wetting flu
through loopless strands~see Fig. 9!. As a consequence, w
find that existing theories@9–12# not considering this effec
are not compatible with drainage when nonwetting stra
dominate the displacement process. We also conjecture
the resultk.1.0 may influence the scaling between the sa

,

FIG. 1. A schematic picture of the front that travels across
system from the inlet to the outlet. In the figure,DPci is the capil-
lary pressure difference between a meniscus atA and a meniscus a
B separated a vertical distanceDh. In the orthogonal direction we
calculateDPc' , that is, the capillary pressure difference betwee
meniscus atB and a meniscus atC separated a horizontal distanc
D l . DPnw andDPw denote the viscous pressure drop going fromA
to B in the nonwetting and wetting phase, respectively.
2936 ©2000 The American Physical Society
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PRE 61 2937DYNAMICS OF STABLE VISCOUS DISPLACEMENT IN . . .
rated front widthws and the capillary numberCa . The cap-
illary number is the ratio between viscous and capilla
forces and in the followingCa[Qmnw /Sg. Here Q is the
injection rate,S is the cross section of the inlet, andmnw is
the viscosity of the nonwetting fluid.

The effect of gravity on the front when the fluids ha
different densities has been thoroughly discus
@13,9,14,15# and in slow drainage it is found that gravity ma
stabilize the front. Gravity causes a hydrostatic pressure
dient in the fluids and considering a heavy nonwetting fl
below displacing vertically upwards a light wetting fluid, th
gradient will stabilize the front. The displacement proce
corresponds exactly to IP with a stabilizing gradie
@9,14,16# and the saturated front widthws , has been shown
to scale likews}Bo

2n/(11n). Heren is the correlation length
exponent in percolation andBo is the bond number indicat
ing the ratio between gravity and capillary forces.

A similar consensus concerning the stabilization mec
nisms when viscous forces replace gravity forces has no
been reached. In the literature the displacement has b
related to IP@9,11,12#, however, the scenario is more com
plicated than in the gravity case. Gravity is a uniform for
acting on the whole system, while the viscous force is lo
and fluctuates due to permeability variations and fluid tr
ping in the porous medium. One standard approach is
separate the displacement structure into two parts. One
sisting of the frontal region, and the other consisting of
static structure behind. The frontal region of extentws , is
assumed to behave as the spanning cluster in percola
Consequently, it is assigned the permeabilityk}ws

2t/n ,
where t is the conductivity exponent in percolation. By a
plying Darcy’s law and assuming that the stabilized fro
reaches a traveling-wave state according to Buckley-Leve
displacement@17#, the scaling of the front width is found to
behave asws}Ca

2a . In the literature there exist two slightl
different expressions fora. In 3D Wilkinson @9# found a
5n/(11t2b1n) where trapping of wetting fluid is as
sumed to be less important. Hereb is the order paramete
exponent in percolation. Later, Bluntet al. @11# suggested in
3D that a5n/(11t1n) which is identical to the result o
Lenormand@10# discussing limits of fractal patterns betwee
capillary fingering and stable displacement in 2D porous m
dia. In the Appendix we present a simple method givinga
5n/(11t2b1n) by applying percolation concepts on th
frontal region when not considering that nonwetting flu
flows in strands.

Recently, Xuet al. @12# used Wilkinson’s arguments an
deduced a scaling relation for the viscous pressure drop
the frontal region. They proposed that the nonwetting pr
sure dropDPnw in the front ~see Fig. 1! should scale as
DPnw}Dht/n1dE212b/n over a distanceDh in the direction
of the displacement. Here,dE is the Euclidean dimension o
the space in which the front is embedded~in our casedE
52) andDh is assumed to be sufficiently large for scaling
be acceptable and less thanws . They also argued that th
pressure drop in the wetting phaseDPw must be linearly
dependent onDh, since the displaced phase is compact.
Ref. @11#, Blunt et al. also suggested a scaling relation f
DPnw , however, in 3D they foundDPnw}Dht/n11. This de-
viates from the result of Xuet al. whendE53.
d
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The paper is organized as follows. In Sec. II we descr
the network model used in the simulations. Section III co
tains the simulation results ofDPci and DPc' , supporting
the arguments we present in Sec. IV. In Sec. V we comp
our findings to some experimental data and the conclus
are drawn in Sec. VI. In the Appendix we deduce the scal
relation betweenws andCa using the ideas in Ref.@9# when
not considering the effect of nonwetting fluid flowing i
strands.

II. NETWORK MODEL

The network model has been presented elsewhere@18,19#
and therefore only its main features will be given here.

In the simulations we have constructed the porous m
dium in two different ways. In the first way the porous m
dium is represented by a square lattice of tubes oriente
45°. The tubes are cylindrical with lengthd. Each tube be-
tween thei th and thej th node in the lattice is assigned a
average radiusr i j which is chosen at random in the interv
@l1d,l2d#, where 0<l1,l2<1. The randomness of th
radii represents the disorder in the system. In the follow
this system will be referred to as the random radii lattice

In the second way the porous medium is constructed u
a square lattice inclined 45° where the distance between e
intersection in the lattice is of unit length. Around each i
tersection we draw a circle of radiusl. To avoid overlapping
circles the givenl must be in the interval 0<l,1/2. A
node is placed at random inside each of the circles and
nodes inside the nearest neighbor circles are connecte
cylindrical tubes. Thus, as for the random radii lattice, fo
tubes meet at each node. We letdi j denote the length of the
tube between thei th and j th node, and the correspondin
radiusr i j is defined asr i j 5di j /2a. Herea is the aspect ratio
between the tube length and the radius. In the simulati
a51.25, hence, the tubes are 25% longer than they are w
In this lattice the position of the nodes represent the disor
in the system, and therefore we will refer to it as the rand
node lattice.

While every pair of nearest neighbor nodes are separ
an equal distance in the random radii lattice, the dista
between two nearest neighbor nodes vary in the random n
lattice. Especially, the shortest length scale, that is the m
mum distance between two neighboring nodes, is less in
random node lattice. Consequently, we are able to gene
more narrow fronts at higher injection rates in the rand
node lattice, than what is possible with the random ra
lattice. Therefore the random node lattice is preferred at h
injection rates where a flat front is generated.

In both lattices the tubes represent the volume of b
pores and throats, and there is no volume assigned to
nodes. The liquids flow from the bottom to the top of th
lattice, and we implement periodic boundary conditions
the horizontal direction. The pressure difference between
bottom row and the top row defines the pressure across
lattice. Initially, the system is filled with a wetting fluid with
viscosity mw . The injected fluid is nonwetting and has vi
cosity mnw>mw . The viscosity ratioM, is defined asM
[mnw /mw .

The capillary pressurepc between the nonwetting an
wetting fluid in a tube is given by Young-Laplace law
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pc5gS 1

R1
1

1

R2
D , ~1!

whereR1 and R2 are the principal radii of curvature of th
interface~a meniscus! and g is the interfacial tension. In a
cylindrical tube of radiusr whereR15R2, Eq. ~1! reduces to
pc5(2g/r )cosu. Hereu denotes the wetting angle betwee
the nonwetting and wetting phases, and in drainageu is in
the interval (0,p/2).

In the network model we treat the tubes as if they w
hourglass shaped with effective radii following a smoo
function. Hence, we let the capillary pressure become a fu
tion of the meniscus position in the tube and assume
Young-Laplace law~1! takes the form

pc5
2g

r F12cosS 2p
x

dD G . ~2!

Here 0<x<d is the position of the meniscus in the tub
whered is the tube length. We assume perfect wetting, i
u50.

By letting pc vary according to Eq.~2!, we include the
effect of burst dynamics into the model@18#. This is particu-
larly seen at low injection rates where the invasion of no
wetting fluid takes place in bursts accompanied by sud
negative jumps in the pressure~Haines jumps! @20–22#. The
detailed modeling of the capillary pressure costs computa
time. However, it is necessary in order to properly simul
the pressure behavior along the front.

The volume fluxqi j through a tube from thei th to thej th
node is found from the Washburn equation for capillary flo
@23#

qi j 52
s i j ki j

m i j

1

di j
~Dpi j 2pc,i j !. ~3!

Hereki j is the permeability of the tube (r i j
2 /8) ands i j is the

cross section (pr i j
2 ) of the tube.m i j is the effective viscosity

given by the sum of the volume fractions of each fluid ins
the tube multiplied by their respective viscosities. The pr
sure drop across the tube isDpi j 5pj2pi , wherepi andpj
is the nodal pressures at nodei and j, respectively. The cap
illary pressurepc,i j is the sum of the capillary pressures
the menisci@given by Eq.~2!# inside the tube. A tube par
tially filled with both liquids, is allowed to contain either on
or two menisci. For a tube without meniscipc,i j 50, and Eq.
~3! reduces to that describing Hagen-Poiseuille flow w
m i j 5m1 or m2.

We assume conservation of volume flux at each node
ing

(
j

qi j 50. ~4!

The summation onj runs over the nearest neighbor nodes
the i th node whilei runs over all nodes that do not belong
the top or bottom rows, that is, the internal nodes.

Equations~3! and ~4! constitute a set of linear equation
which are to be solved for the nodal pressurespi , with the
constraint that the pressures at the nodes belonging to
e

c-
e
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-
n

n
e

-

v-

he

upper and lower rows are kept fixed. The set of equation
solved by using the conjugate gradient method@24#.

During every simulation we held the injection rateQ fixed
and calculate a time dependent pressureDP across the sys-
tem. See Refs.@18,19# for details on howDP and the corre-
spondingpi ’s are found.

Having found thepi ’s we calculate the volume fluxes
qi j , through every tube in the network, using Eq.~3!. Ac-
cording to theqi j ’s we define a time stepDt, such that every
meniscus is allowed to travel at most a maximum step len
Dxmax, during that time step. The menisci are then move
distance (qi j /s i j )Dt and the pressureDP and the time lapse
are recorded, before thepi ’s are solved for the new fluid
configuration. Menisci that are moved out of a tube durin
time step are spread into neighbor tubes. For details ab
how the menisci are moved into neighbor tubes see R
@18,19#.

Numerical simulations show thatDxmax must be of order
0.1 to calculate the variation in the capillary pressure whe
meniscus travels through a tube. In all simulations presen
hereDxmax50.1, resulting in at least ten time steps to inva
one tube with nonwetting fluid. This causes the computat
time to increase dramatically and one displacement sim
tion on lattices of sizes presented in this paper takes typic
between 3–15 h on a 400 MHz Pentium II processor.

III. SIMULATIONS

We have run drainage simulations at different injecti
rates and fluid viscosities to study the capillary press
variations along the invasion front. Due to the huge com
tational effort that is necessary, the simulations have b
limited to lattices of size 25335 and 40360 nodes~Sec.
III A !. We have also run some simulations where the latt
initially was filled with nonwetting and wetting fluid accord
ing to patterns which were generated by an IP algorit
~Sec. III C!. In this way, we were able to study the capilla
pressure along invasion fronts on lattices of 2003300 nodes.

In every simulation,DPci , DPc' , and the front width
between the invading and the defending fluid, was record
The front was detected by running a Hoshen-Kopelman
gorithm @25# on the lattice and recognized as the set of tub
that contains a front meniscus between the nonwetting
wetting phase, that is, the front tubes. The front widthw is
defined as the standard deviation of the vertical distan
between front tubes and the average position of the front.
hi denote the vertical distances of the front tubes above
inlet, wherei 51, . . . ,nf andnf is the total number of front
tubes. Then at a particular time, we calculatew
5@(1/nf)( i(hi2h)2#1/2, whereh is the average of thehi ’s.

DPci and DPc' are calculated as follows. Consider tw
front menisci denoted bym and n with height hm and hl
above the inlet~bottom row! at a distancel m andl n from the
left boundary of the lattice. Assume thathm.hn , then we
calculate the differenceDPc

mn(Dh,D l )5pc
n2pc

m whereDh
5hm2hn andD l 5u l m2 l nu. If insteadhn.hm , we compute
DPc

nm(Dh,D l )5pc
m2pc

n whereDh5hn2hm . We only con-
sider the front tubes containing one meniscus and where
nonwetting fluid invades the tube from below. Note also, t
we always take the capillary pressure of the meniscus clo
to the inlet minus the capillary pressure of the meniscus c



ec

los

in
s
s

a
P

os
s

re
t
.
er-
on
e
of

d
d
we

lly

ty
to
he

of

of

e

t
rd

PRE 61 2939DYNAMICS OF STABLE VISCOUS DISPLACEMENT IN . . .
est to the outlet. From above, we defineDPci as a function
of Dh as the average ofDPc

mn over all pairsmn separated a
distance Dh but different D l , i.e., DPci5^DPc

mn(Dh
5const.,D l )&.

The capillary pressure difference in the orthogonal dir
tion, DPc' ~parallel to the inlet!, as a function ofD l is de-
fined as the average ofuDPc

mnu over all pairsmn with equal
height (Dh50) above the inlet whenD l is held constant.
Thus, in the above notation DPc'5^uDPc

mn(0,D l
5const.)u&.

The simulations were performed with parameters as c
as possible to the experiments performed in Ref.@26#. In the
random radii lattice we set the lengthd of all tubes equal to
1 mm and the radiir of the tubes were randomly chosen
the interval 0.05d<r<d. In the lattices with random node
we chose the positions of the nodes such that the length
the tubes were inside the interval 0.2<d<1.8 mm. This gave
us the radii of the tubes, defined byr 5d/2a, where a
51.25. For both types of lattices the interfacial tension w
set tog530 dyn/cm, and the fluid viscosities were 0.10
0.50 P, or 10 P.

A. Capillary pressure behavior

We have performed two series of simulations with visc
ity ratio M5100 and one series of viscosity matched fluid
M51. In all series the capillary numberCa was systemati-

TABLE I. Simulations performed on the random radii lattice
size 25335 nodes andM5100 (mnw510 P, mw50.10 P!. The
table contains the number of runs at eachQ andCa and the calcu-
latedws .

Runs
Q

(cm3/min) Ca ws

30 0.050 3.731024 5.560.5
30 0.10 7.331024 4.360.4
30 0.20 1.531023 3.760.4
30 0.50 3.731023 3.060.3
30 0.80 5.831023 2.560.3
30 1.5 1.131022 2.460.2

TABLE II. Simulations performed on the random node lattice
size 25335 nodes andM5100 (mnw510 P, mw50.10 P!. The
table contains the number of runs at eachQ andCa , and the cal-
culatedws .

Runs
Q

(cm3/min) Ca ws

10 0.010 1.031024 4.360.6
20 0.030 3.131024 2.960.3
20 0.050 5.231024 2.560.2
20 0.10 1.031023 2.160.2
20 0.30 3.131023 1.460.1
15 0.50 5.231023 1.260.1
15 1.0 1.031022 0.960.1
10 2.0 2.131022 0.860.1
10 4.0 4.231022 0.860.1
-

e

of

s
,

-
,

cally varied by changing the injection rateQ. Tables I, II,
and III list Q,Ca , and the type of lattice~random radii or
random nodes! used in the different series. Also shown a
the calculated front widthws , and the number of differen
runs we did at eachQ to obtain reliable average quantities

Figure 2 shows the calculated capillary pressure diff
enceDPci , in the direction of the displacement as a functi
of height separationDh. We have plotted the result for som
of the simulations performed on the random radii lattice
25335 nodes withM5100 ~filled symbols! and for some of
the random node lattices of 40360 nodes withM51 ~open
symbols!. In the inset of Fig. 2 the results for highest an
lowestCa with M5100 are plotted in a logarithmic plot an
fitted to straight lines. Assuming a power law behavior,
find that at Ca53.731024 and M5100, DPci}Dhk and
k51.0. The exponentk seems to decrease systematica
with increasing injection rate, and atCa51.131022 and
M5100 our best estimate isk50.8. Similar results were
found from the simulations performed with viscosi
matched fluids (M51). The data points corresponding
Dh<1 tube length are omitted in the calculations of t

TABLE III. Simulations performed on the random node lattic
of size 40360 nodes andM51 (mnw5mw50.50 P!. The table
contains the number of runs at eachQ and Ca and the calculated
ws .

Runs
Q

(cm3/min) Ca ws

10 0.050 1.631025 7.561.5
10 0.10 3.231025 6.961.2
15 0.30 9.731025 5.260.5
15 0.60 1.931024 4.460.5
20 1.2 3.931024 3.860.5
20 2.4 7.831024 3.060.2
20 4.8 1.631023 2.460.2

FIG. 2. DPci as a function ofDh for someCa with M5100
~Table I! andM51 ~Table III!. DPci is the average of the differen
runs performed at eachCa , and the error bars denote the standa
error of the mean. Inset: log10(DPci) as a function of log10(Dh) for
Ca51.131022 and Ca53.731024 with M5100. The solid lines
were fitted to the curves and their slopes are given byk.
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2940 PRE 61AKER, MÅLO”Y, AND HANSEN
exponent in Fig. 2. At short distances we expect uncertain
in the result because of the finite length of the tubes in
lattice.

In Fig. 2 we observe thatDPci increases more rapidly a
function ofDh at high injection rates compared to the resu
at low injection rates. In the plot the effect is most significa
whenM5100. At an extremely low injection rate we expe
DPci in Fig. 2 to approach zero and become independen
Dh. In this limit the capillary pressure of the menisci alon
the front are almost equal~capillary equilibrium!. As seen
from Fig. 2, we have not performed simulations with th
low injection rate. Instead the lowestCa for M5100 and
M51, corresponds to the injection rate where no clear
bilization of the front was found due to the finite size of t
system.

At higher injection rates the viscous gradient stabilizes
front. The gradient results the capillary pressure of the m
nisci closest to the inlet to exceed the capillary pressure
the menisci further down the stream. This is indicated in F
3, showing the average position̂x& of the front menisci
inside the tubes as a function of their vertical heighth, rela-
tive to the bottom height of the fronthmin . ^x& is plotted for
high, intermediate, and lowCa for the simulations listed in
Table II. From the figure we observe that at highCa51.0
31022 ~dashed line!, the menisci nearhmin are placed close
to the middle of the tube compared to the menisci ahe
Consequently, the capillary pressure of the menisci nearhmin
will more likely be larger than the capillary pressure of t
menisci away fromhmin and therefore tubes nearhmin will
more easily be invaded. This will eventually stabilize t
front. Remember that the tubes are hourglass shaped
most narrow atx50.5 @see Eq.~2!#. At a low injection rate,
Ca51.031024 ~solid line!, we approach the regime of cap

FIG. 3. The average position̂x& of the front menisci inside the
tubes as function of the menisci’s heighth relative to the bottom
height of the fronthmin . The plot shows the result from simulation
in Table II atCa51.031024 ~solid line!, 1.031023 ~dotted line!,
and 1.031022 ~dashed line!. Inset: The correspondingDPc' as a
function of D l . The lattice size was 25335, giving a maximum
horizontal distanceD l 512.5 due to the periodic boundary cond
tions in the horizontal direction. The error bars denote the stand
error in the mean.
s
e

t

of

t

a-

e
-

of
.

d.

nd

illary equilibrium giving almost no difference in̂x& as a
function of h2hmin .

For the threeCa’s in Fig. 3 we have also calculated th
capillary pressure difference in the orthogonal directio
DPc' , as function of horizontal distance,D l . The result is
shown in the inset of Fig. 3. Here we interpretDPc' as the
horizontal correlations in the capillary pressure between m
nisci at the same height. Recall thatDPc' contains terms
like upc

m2pc
nu5A(pc

m2pc
n)2, where pc

m and pc
n denote the

capillary pressure of two front meniscim andn, respectively.
From the inset of Fig. 3 we see that at lowCa51.031024

~solid line! the capillary pressure of two menisci at the sam
height and a distanceD l &7 apart, are correlated to eac
other becauseDPc' has not yet reached the constant plate
(D l .7) where the capillary pressures becomes uncorrela
At short distancesDPc' approaches zero, indicating tha
neighboring menisci have equal capillary pressures. At h
Ca51.031022 ~dashed line!, we observe that the correla
tions are very short. Already forD l .1,DPc' reaches the
plateau and the capillary pressures of the menisci no lon
interfere. Thus, if we consider a narrow and a wide tube
the same height, the viscous forces are strong enough to
the nonwetting fluid through both the narrow and the wi
tube simultaneously. As a result, nonwetting fluid will in
vade simultaneously everywhere along the front. Similar
havior is observed in the other simulations listed in Table
and III at highCa

B. Effect of viscosity ratio on the capillary pressure

Figure 4 shows a log-log plot ofDPci taken at Dh
5ws, as a function ofCa for the simulations performed on
the random node lattice withM5100 ~Table II! and M51
~Table III!. In the following DPci at ws is denoted as
DPci(ws). If we ignore the effect of nonwetting strands an

rd

FIG. 4. log10@DPci(ws)# as a function of log10(Ca) for the
simulations performed on the random node lattice withM5100
~top! and M51 ~bottom!. The slope of the solid line in the uppe
figure is 0.15. The error bars denote the standard error in the m
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use the result presented in the Appendix on our problem,
have thatDPci(ws)}Caws

k by settingDh5ws in Eq. ~A1!.
Here ws}Ca

2a where a5n/(11t2b1n) and k5t/n11
2b/n according to the Appendix. By combining the tw
power laws we obtainDPci(ws)}Ca

1/(11t2b1n) giving in
2D, DPci(ws)}Ca

0.29.
If we assume a power law behavior betweenDPci(ws)

andCa , our best result for the exponent is 0.1560.05 when
M5100 in Fig. 4. Note that there seems to be an up
cutoff atCa*1.031022 whereDPci(ws) stops growing. At
Ca*1.031022 the front is typically flat and we approac
the minimum width due to the finite length of the tubes~see
Table II!. In this limit we expect a crossover to another ty
of behavior.

If it is difficult to confirm any power law whenM5100,
the result ofM51 in Fig. 4, does not show any scalin
behavior. Already forCa*131024, DPci(ws) reaches a
plateau or even decreases. To explain the different beha
of DPci(ws) when M51 and 100, we first look at the
strength of the capillary pressure drop across the front
second we compare that to the magnitude ofDPc' as a func-
tion of Ca .

To study the capillary pressure drop we have calcula
the average capillary pressure^Pc& in the frontal region as a
function of the relative height from the bottom of the fron
(h2hmin)/ws. The height is normalized by dividing with th
saturated front widthws . In the simulationŝ Pc& was com-
puted by taking the average of the capillary pressures of
front menisci at the same height,h, above the inlet. Figure 5
shows the result for two simulations with almost equalCa
but differentM. One withM51 andCa51.631023 ~Table
III ! and the other withM5100 andCa51.031023 ~Table
II !. If we consider the middle part of the front between t
two vertical dashed lines in Fig. 5, we observe that the c
illary pressure drop,2wsd^Pc&/dh, over a lengthws in the
front, is higher forM5100 than forM51, even though the
capillary numbers are almost equal. In both simulation
typical narrow front with a compact displacement structu
developed. On average,2wsd^Pc&/dh must equal the dif-
ference between the pressure drops taken in the nonwe
and wetting part of the front over a lengthws ~see Fig. 1!.
When the nonwetting and wetting fluid have equal visco

FIG. 5. ^Pc& in the frontal region as a function of the relativ
height from the bottom of the front. The height distance is norm
ized by dividing with the saturated front widthws . The vertical
dashed lines indicate the region where^Pc& is approximately linear.
The error bars denote the standard error of the mean.
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ties the pressure drops in the nonwetting and wetting par
the front, and is about the same, explaining the smaller c
illary pressure drop whenM51 than whenM5100 in Fig.
5.

Let us now study the behavior ofDPc' . Simulations
show thatDPc' as a function ofD l does not change muc
when comparing simulations performed at equalCa with
M51 andM5100. Especially, the constant plateau whe
the capillary pressures are uncorrelated~see inset of Fig. 3!
has the same value. This is illustrated in Fig. 6 where
have plotted the plateau ofDPc' versusCa in a logarithmic
plot for simulations with M5100 ~Table II! and M51
~Table III!. From the figure we observe that the plateau do
not depend onM. As a side mark, we notice that there see
to be a power law between the plateau ofDPc' and Ca ,
which we indicate by the straight line in Fig. 6. The slope
the line is 0.2.

From the above discussion we draw the following conc
sion. Consider two parallel and horizontal lines intersect
the front, and let the lines be separated a vertical dista
ws . WhenM51 we have found that the capillary pressu
drop between the lines is small due to the equal fluid visco
ties ~Fig. 5!. However, the magnitude~plateau! of DPc' , is
found to be the same as whenM5100 ~Fig. 6!. Thus, when
M51 the relative small capillary pressure drop is anni
lated by the magnitude of the capillary variations in the ho
zontal direction,DPc' . This destroys a possible power la
behavior of DPci(ws) when M51 in Fig. 4. When M
5100, the capillary variations are too small to annihilate t
larger capillary pressure drop there, giving the increas
function DPci(ws). If we divide the capillary pressure drop
calculated in Fig. 5, with the plateau ofDPc' in Fig. 6, we
find that the ratio is a factor three lower forM51 than for
M5100 atCa.1.031023.

C. Capillary pressure on IP patterns

We have studied the capillary pressure along the fron
patterns generated by an IP algorithm with a stabilizing g
dient. The patterns were loaded into our network model,
the simulations were started from that point. Using th
method, we were able to perform displacement simulati

l- FIG. 6. The logarithm of the plateau ofDPc' versus the loga-
rithm of Ca for M5100 ~circles! andM51 ~boxes! corresponding
to simulations listed in Table II and Table III, respectively. Th
slope of the solid line is 0.2. See also the inset of Fig. 3.
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in a short period of time on patterns generated on lattice
2003300 nodes. The result of these simulations are base
the assumption that the generated patterns are statisti
equal to the structures that would have been obtained
corresponding complete displacement simulation.

The IP algorithm was performed on the bonds in a squ
lattice with the bonds oriented at 45°. Hence, the bonds
respond to the tubes in our network model and an occup
bond refers to a tube filled with nonwetting fluid. Each bo
was assigned a random numberf i j in the interval @0,1#
wherei j denotes the bond between thei th and thej th node
in the lattice. A stabilizing gradientg was applied on the
lattice giving an occupation thresholdt i j 5 f i j 1ghi j of every
bond@9,14#. Herehi j denotes the height of bondi j above the
bottom row. The occupation of bonds started at the bott
row, and new bonds were occupied until the invasion fr
reached the top row. There were periodic boundary con
tions in the horizontal direction. The next bond to be occ
pied was defined as the bond with the lowest threshold va
from the set of empty bonds along the invasion front. T
invasion front was found by running a Hoshen-Kopelm
algorithm on the lattice.

We generated four IP patterns withg50.05 and different
sets of random numbersf i j . When the invasion front becam
well developed with trapped~wetting! clusters of all sizes
between the size of the bonds and the front width, the st
tures were loaded into our network model. Figure 7 sho
one of the generated IP patterns.

The loading was performed by filling the tubes in t
network model with nonwetting and wetting fluid accordin
to occupied and empty bonds in the IP lattice. Furthermo
the radiir i j of the tubes were mapped to the random numb
f i j of the bonds, by settingr i j 5@l11(l22l1)(12 f i j )#d.
Thus, r i j P@l1d,l2d#, where we set the tube lengthd
51 mm, l150.05, andl251.0.

Above, r i j is mapped to 12 f i j because in the IP algo
rithm the next bond to be invaded is the one with the low
threshold value, opposite to the network model, where
widest tubes will be invaded first. Note also, that in the n
work model the invasion of nonwetting fluid is controlled b
the threshold capillary pressurespt of the tubes. According
to Eq. ~2! pt54g/r in the middle of the tubes wherex

FIG. 7. One of the generated IP patterns withg50.05 on a
lattice of 2003300 nodes. The pattern was loaded into our netw
model.
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5d/2. In the IP model the distribution off i j is flat. Thus,
when r i j is mapped tof i j as described above, we obtain
1/pt

2 distribution of capillary pressure thresholds. Howev
since there is a one to one correspondence in the map
betweenf i j and pt , we can assume that the IP patterns a
statistically equal to similar structures that would have be
generated in a full displacement simulation. The assump
provides that the displacement simulation is performed w
an appropriate injection rateQ, according tog that was used
to generate the IP patterns.

After the IP patterns were successfully loaded into
network model, we started the simulations and ran the
placement a limited number of time steps whileDPci was
recorded. The number of time steps were chosen such
the front menisci got sufficient time to adjust according
the viscous pressure set up by the injection rate. For all f
structures we choseM5100 and Q50.1 ml/min, giving
Ca59.531025. This Ca might be too high compared to th
front widths we obtained at lowCa from simulations listed in
Tables I and II. The reason why we choose a highCa is to
minimize computation time. Simulations show that few
time steps and hence, less CPU time are required to ad
the front menisci when a high injection rate is applied
stead of a low one. Moreover, the simulations also show
as long as the number of time steps are chosen sufficie
large to allow the front menisci to adjust, the exponentk in
DPci}Dhk is not sensitive on the injection rate. In th
present simulations the number of time steps was 400.

The result of the simulations is shown in Fig. 8 where w
have plotted log10(DPci) versus log10(Dh). As for the pre-
vious results, we findk51.060.1. The slope of the straigh
line in Fig. 8 is 1.0. We have also done displacement sim
lations on one of the IP patterns atCa5231026 with M
51 andM5100. These simulations were run in 1600 tim
steps and the result of those is consistent with Fig. 8.

IV. EFFECT OF LOOPLESS STRANDS

In Ref. @12# it was argued thatDPci5DPnw2DPw ~see
Fig. 1!. At low injection rates or when the nonwetting pha
is much more viscous than the wetting phase,DPw

k

FIG. 8. log10(DPci) as a function of log10(Dh) for simulations
initiated on IP patterns on lattices of 2003300 nodes.Ca59.5
31025 andM5100. The result is averaged over four different ru
and the error bars denote the standard error in the mean. The
of the straight solid line is 1.0.
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!DPnw, giving DPci;DPnw . Thus, if the result of Xuet al.
@12# should be valid for our problem, we would expect
find DPci}Dhk wherek5t/n1dE212b/n. Inserting val-
ues of the exponents in 2D (t51.3,n54/3,dE52,b55/36)
gives k.1.9. Our simulations clearly indicate thatk.1.0
which is inconsistent with the proposed result in Ref.@12#.
Below we present an alternative view on the displacem
pattern from that initiated by Wilkinson@9# and used by Xu
et al.The alternative view is based upon the observation
nonwetting fluid flows in separate strands.

Figure 9 shows two typical displacement structures t
were obtained from simulations at low and highCa on the
lattice of 40360 nodes withM51 ~Table III!. We observe
that the nonwetting fluid~dark gray and black! generates
patterns containing no closed loops. That means followin
path on nonwetting fluid will never bring us back to th
starting point. The loopless structure is a direct conseque

FIG. 9. Two displacement structures of simulations at highCa

53.931024 ~above! and lowCa51.631025 ~below! before break-
through of nonwetting fluid. The nonwetting fluid~dark gray and
black! is injected from below and wetting fluid~light gray! flows
out along the top row. The lattice size was 40360 nodes andM
51 ~Table III!. The black tubes denote the loopless strands wh
nonwetting fluid flows and the dark gray tubes indicate nonwett
fluid unable to flow due to trapped regions of wetting fluid. Becau
of fluid trapping and subsequent volume conservation of wet
fluid, strands of different starting points along the inlet can ne
connect. Note the few fluid supplying strands from the inlet to
frontal region at lowCa compared to the case at highCa .
nt

at

t

a

ce

of the evidence that a tube filled with wetting fluid and su
rounded on both sides by nonwetting fluid is trapped due
volume conservation of wetting fluid. Because of trapp
wetting fluid, the nonwetting fluid also flows in separa
strands, indicated as black tubes in Fig. 9. When the nonw
ting fluid percolates the system there exists only one s
strand connecting the inlet to the outlet. The dark gray tu
connecting to the strands are dead ends where nonwe
fluid cannot flow because of trapped wetting fluid. We no
that the evidence of trapped wetting fluid in single tubes m
easily be generalized to 3D and therefore our argume
should be valid there too. Similar loopless structures as
Fig. 9 were also pointed out in Ref.@27# for site-bond IP
with trapping and in Ref.@28# for a loopless IP algorithm.

From Fig. 9 we may separate the displacement patte
into two parts. One consists of the frontal region contin
ously covering new tubes, and the other consists of the m
static structure behind the front. The frontal region is su
plied by nonwetting fluid through a set of strands that co
nects the frontal region to the inlet. When the strands
proach the frontal region they are more likely to split. Sin
we are dealing with a square lattice, a splitting strand m
create either two or three new strands. As the strands pro
upwards in Fig. 9, repeated splits cause the frontal regio
be completely covered by nonwetting strands.

On IP patterns with trapping@27# or without loops@28,29#
the lengthl of the minimum path between two points sep
rated a Euclidean distanceR scales likel}RDs whereDs is
the fractal dimension of the shortest path. We assume
the displacement pattern of the frontal region for length l
than the correlation length~in our casews) is statistically
equal to the IP patterns in Ref.@27#. Therefore, the length o
the nonwetting strands in the frontal region is proportiona
DhDs; whereDh is some vertical length less thanws . If we
assume that on the average every tube in the lattice has
same mobility (ki j /m i j ), we obtain that the fluid pressur
within one strand must drop likeDhk wherek5Ds . Let us
now consider the effect on the pressure when strands spl
we assume that the strands are straight (Ds51) then follow-
ing a path where strands split would cause the pressur
drop asDhk wherek,1. This is because the volume fluxe
through the strands after a split must be less than the flu
the strand before it splits, due to volume conservation
nonwetting fluid.

The two effects (k5Ds andk,1) predict that the pres
sure drop in the nonwetting phase of the frontal regio
DPnw , should scale asDPnw}Dhk, wherek<Ds . In 2D
two different values forDs have been reported:Ds51.22
@28,29# for loopless IP patterns, andDs51.14 @27# for the
single strand connecting the inlet to the outlet when nonw
ting fluid percolates the system. We note that the resul
Ref. @27# is essentially equal toDmin51.13 @25#, that is, the
fractal dimension of the minimum path in 2D percolatio
where loops generally occur. Any of the above values forDs
together with the argumentk<Ds are supported by ou
simulations findingk51.060.1.

Note the different pattern of strands at high and lowCa in
Fig. 9. At low Ca few strands are supplying the frontal re
gion with nonwetting fluid, and the strands split many tim
before the whole front is covered. At highCa the horizontal
distance between each strand in the static structure is m
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shorter, and only a few splits are required to cover the fro
Moreover, we observe that at highCa the length of indi-
vidual strands in the front approaches the minimum len
due to the tubes. In this limit we may treat the strands in
front as straight lines~i.e., Ds51) causingk<1. This is
indeed supported by numerical results, finding thatk de-
creases from about 1.0 to 0.8 when increasingCa ~see Fig.
2!.

Another important issue, arising at lowCa , is the effect
of bursts on the capillary pressure. A burst occurs whe
meniscus along the front becomes unstable and nonwe
fluid abruptly covers new tubes@22#. The strand where a
burst initiates experiences a much higher fluid transport r
tive to strands far away. Describing the pressure beha
between the strand of the burst and the rest of the fron
nontrivial. However, simulations show that even duri
bursts we find thatDPci increases linearly withDh.

The indication thatk.1.0 may influence the scaling be
havior of ws as a function ofCa . Assuming Darcy flow
where the pressure drop depends linearly on the injec
rate, we conjecture thatD P̂ci}CaDhk. Here D P̂ci denotes
the capillary pressure difference over a heightDh when the
front is stationary. That meansD P̂ci excludes situations
where nonwetting fluid rapidly invades new tubes due
local instabilities~i.e., bursts!. The above conjecture is sup
ported by simulations showing that in the lowCa regime
D P̂ci}CaDhk wherek.1.0. Note, thatD P̂ci.” DPci in Fig.
2, since the latter includes both stable situations and bur

At sufficiently low Ca the displacement may be mappe
to percolation givingD P̂ci} f 2 f c}j21/n @16,9,14#. Heref is
the occupation probability of the bonds,f c is the percolation
threshold, andj}ws is the correlation length. By combinin
the above relations forD P̂ci we obtainws}Ca

2a wherea
5n/(11nk). In 2D n54/3 and insertingk51.0 givesa
.0.57.

In Sec. III A we found that at highCa the nonwetting
fluid invades simultaneously everywhere along the fro
Hence, the front never reaches a stationary state becau
rapidly succeeding local instabilities. This is supported
simulations showing a crossover inD P̂ci to a nonlinear de-
pendency onCa . Consequently, the above mapping to p
colation might no longer be valid and we expect another t
of functional behavior betweenws and Ca in the high Ca
regime.

V. COMPARISON WITH EXPERIMENTS

Fretteet al. @26# performed two phase drainage displac
ment experiments in a 2D porous medium with viscos
matched fluids (M51). They reported on the stabilization o
the front and measured the saturated front widthws , as a
function of Ca . For all our simulations except those pe
formed on the IP patterns, we have calculatedws . In Fig. 10
we have plottedws as a function ofCa in a logarithmic plot
for the simulations in Table III~open diamonds! together
with the experimental data of Fretteet al. ~filled circles!.

In Ref. @26#, their best estimate of the exponenta when
assuming a power lawws}Ca

2a wasa50.660.2, indicated
by the solid line in Fig. 10. This is consistent with the su
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gested valuea5n/(11nk).0.57 from Sec. IV. The simu-
lations show a different behavior and they seem to fita
50.360.1, according to the dashed line in Fig. 10. T
simulations performed on the lattices of 25335 nodes
~Tables I and II! also givea.0.3.

Even though the overlap between experimental and
merical data in Fig. 10 is poor we suggest that the differ
behavior of the experiments~at Ca&1.031025) and simula-
tions ~at Ca*1.031025) might be due to an expecte
change ina at highCa . According to the discussion in Sec
IV it is not clear if the percolation approach givinga
5n/(11nk) is valid for highCa . The different scaling be-
havior observed in Fig. 10 might also be caused by the sm
system size of the simulations. AtCa.1.031025 numerical
simulations show that the front width becomes bounded
the system size, and therefore we are not able to obser
possiblea5n/(11nk) regime. We stress that more simul
tions on larger systems and at lowerCa are required in order
obtain better overlap between simulations and experimen
Fig. 10. Until then, it is hard to draw any conclusions on t
correcta.

As a side remark, we note that our simulations givinga
.0.3 are in agreement with numerical work in Ref.@12#.
Their calculations ofws were done forCa between 1025 and
1024 coinciding with our region of simulations in Fig. 10
According to Wilkinson@9# a5n/(11t2b1n) and by in-
serting values of the exponents in 2D we obtaina.0.38.
This is also within the uncertainties of our simulation resu
However, we emphasize that this might as well be a coin
dence rather than evidence, because Wilkinson’s theory d
not take into account that nonwetting fluid flows in stran
along the front.

A somewhat different process, but very interesting res
is presented by Shaw in Ref.@30#. He measured the width o
the drying front in a quasi-2D porous system and found t
ws}v f

0.4860.1. Here v f is the average front velocity. Quite
recently, this has been compared to theory in Ref.@31#.

VI. CONCLUSION

We have reported on the stabilization mechanisms of
front in drainage displacement going from low to high inje

FIG. 10. log10(ws) as a function of log10(Ca) for experiments
from @26# and simulations on the lattice of 40360 nodes~Table
III !. For both experiments and simulationsM51. The slope of the
solid and dashed line is20.6 and20.3, respectively.
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tion rates. The stabilization process was studied by usin
network model simulating the viscous and capillary press
buildup in the fluids during the displacements. We ha
found that the capillary pressure differenceDPci , along the
front varies almost linearly with the distanceDh, in the di-
rection of the displacement. We conclude from simulatio
thatDPci}Dhk where our best estimate isk51.060.1. This
result supports the arguments showingk<Ds , whereDs is
the fractal dimension of the loopless strands characteriz
the displacement pattern. The evidence that nonwetting fl
flows in loopless strands along the front are not considere
earlier proposed theories@9–12#. Hence, we conclude tha
they are not compatible with drainage when nonwett
strands dominate the displacement process.

Using the evidence thatk.1.0, we conjecture that th
scaling of the front widthws as a function ofCa might alter
from earlier suggestions in Refs.@9,11,12#. By mapping our
problem to percolation we findws}Ca

2a where a5n/(1
1nk). The result is consistent with experiments perform
by Fretteet al. @26#. Unfortunately, due to the small syste
sizes we are not able to confirm this scaling behavior by
simulations. We emphasize that a more stringent test oa
should include simulations on larger systems and lowerCa
than presented here.

In addition toDPci we have calculated the capillary pre
sure variations along the front in the direction parallel to
inlet, DPc' . Qualitatively, we have shown thatDPc' is a
good indicator on whether the capillary pressures of the
nisci along the front are all equal~capillary equilibrium! or
fluctuating due to the viscous forces. When the capill
fluctuations are strong, we do not expect percolation to b
proper model for the displacement process.
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APPENDIX

Below we show how to deducea5n/(11t2b1n) in
ws}Ca

2a and find the corresponding exponentk511t/n
ch
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1b/n in the power lawDPci}Dhk when not considering
that nonwetting fluid flows through strands. The calculatio
are carried out in two dimension, however, the extension
three dimensions is straightforward.

Let us consider a piece of the nonwetting phase of s
Dh in the frontal region. We assume thatDPci vary as

DPci}vDhk, ~A1!

wherev is the average fluid velocity in the pores. Moreove
we assume that the front has reached a steady state and
the structure of the front is statistically equal to the front
an invasion percolation pattern. This assumption provi
that Dh is sufficiently large for the percolation concept
apply but less than the front widthws .

The average nonwetting pore fluid velocityv, in the re-
gion of sizeDh, is given by Darcy’s law

v5
1

S

k

m

DPci

Dh
. ~A2!

HereS is the saturation of the nonwetting phase, that is,
volume fraction where nonwetting fluid can flow, andk is the
permeability of the frontal region. According to percolatio
the frontal region is fractal, with fractal dimensionD5d
2b/n, giving

S}
Dhd2b/n

Dhd
5Dh2b/n, ~A3!

and

k}Dh2t/n. ~A4!

Heret is the conductivity exponent,b is the order paramete
exponent, andn is the correlation length exponent in perc
lation.

By inserting the expressions forS, k, andDPci into Eq.
~A2! we find the exponentk511t/n2b/n. The exponenta
follows by settingDh5ws and replaceDPci in Eq. ~A1!
with the power lawws}j}DPci

2n . Herej denote the corre-
lation length in percolation.
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