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Dynamics of stable viscous displacement in porous media
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We investigate the stabilization mechanisms of the invasion front in two-dimensional drainage displacement
in porous media by using a network simulator. We focus on the process when the front stabilizes due to the
viscous forces in the liquids. We find that the capillary pressure difference between two different points along
the front varies almost linearly as a function of height separation in the direction of the displacement. The
numerical results support arguments that differ from those suggested earlier for viscous stabilization. Our
arguments are based upon the observation that nonwetting fluid flows in loopless spatidsand we
conclude that earlier suggested theories are not suitable to drainage when nonwetting strands dominate the
displacement process. We also show that the arguments might influence the scaling behavior between the front
width and the injection rate and compare some of our results to experimental work.

PACS numbgs): 47.55.Mh, 47.55.Kf, 07.05.Tp

I. INTRODUCTION above the inlet but separated a horizontal distaitesee
Fig. 1). Simulations show that assuming a power law behav-

Immiscible displacement of one fluid by another fluid in ior APy <Ah”, our best estimate of the exponent for a wide
porous media has important applications in a wide range ofange of injection rates and different fluid viscositieskis
different technologies. Most often mentioned is hydrology=1.0+0.1. This is a surprising result because the viscous
and oil recovery. From a theoretical point of view, the dis-force field that stabilizes the front is nonhomogeneous due to
placement process is very complex and hard to describe ifiapping of wetting fluid behind the front and to the fractal
detail. Especially, much attention has been paid to the ricfpehavior of the front structure.
variety of displacement structures that is observed. The dis- We also present arguments being supported by the nu-
placement structures are found to depend strongly on fluitherical evidence that=1.0. The arguments are based upon
properties such as viscosity, interfacial tension, fluid flowthe observation that nonwetting fluid displaces wetting fluid
rate, and wettability1—4]. through loopless strandsee Fig. 9. As a consequence, we

In drainage the primary process is the displacement of &nd that existing theorief0—12] not considering this effect
wetting fluid by a nonwetting fluid in porous media. Con- are not compatible with drainage when nonwetting strands
sider a two-dimensional2D) horizontal displacement of a dominate the displacement process. We also conjecture that
less viscous fluid by a more viscous fluid. At high injection the result«=1.0 may influence the scaling between the satu-
rates the front developing between the invading and defend-
ing fluid, is known to stabiliz¢3]. In contrast, at extremely Outlet
low injection rate the invading fluid generates a growing
cluster similar to the cluster formed by invasion percolation
(IP) [5—8]. The displacement is now controlled solely by the AR, Front
capillary pressure, that is, the pressure difference between wetting BT ___ T
the two fluids across a meniscus.

In this paper we address the question of how the invasion

front stabilizes when no gravity forces are pres@i hori- : }
zontal displacement To do this, we have developed a net- We‘““@ It
work model that properly simulates the dynamics of the cap- O {b

illary pressures due to the menisci along the front as well as U

the viscous pressure buildup in the fluids. From the simula-
tions we have calculated the capillary pressure difference Inlet

AP between menisci along the front separated a distance r5 1 A schematic picture of the front that travels across the
Ah in the direction of the displacement. Also calculated ISsystem from the inlet to the outlet. In the figureP, is the capil-

the capillary pressure in the orthogonal directibR., , that |ary pressure difference between a meniscus and a meniscus at
is, the capillary pressure between menisci at the same heigBtseparated a vertical distandéh. In the orthogonal direction we
calculateAP., , that is, the capillary pressure difference between a
meniscus aB and a meniscus & separated a horizontal distance
*Also at Norwegian University of Science and Technology, Al. AP,, andAP,, denote the viscous pressure drop going fram
N-7491 Trondheim, Norway. to B in the nonwetting and wetting phase, respectively.
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rated front widthwg and the capillary numbet,. The cap- The paper is organized as follows. In Sec. Il we describe

illary number is the ratio between viscous and capillarythe network model used in the simulations. Section Il con-

forces and in the followingC,=Qu,,, /S y. HereQ is the  tains the simulation results afP, and AP, , supporting

injection rate,Y is the cross section of the inlet, apg,,, is  the arguments we present in Sec. IV. In Sec. V we compare

the viscosity of the nonwetting fluid. our findings to some experimental data and the conclusions
The effect of gravity on the front when the fluids have aré drawn in Sec. V1. In the Appendix we deduce the scaling

different densities has been thoroughly discussedelation betweenvs andC, using the ideas in Re[g] when

[13,9,14,15and in slow drainage it is found that gravity may not considering the effect of nonwetting fluid flowing in

stabilize the front. Gravity causes a hydrostatic pressure gré_trands.

dient in the fluids and considering a heavy nonwetting fluid

below displacing vertically upwards a light wetting fluid, this Il. NETWORK MODEL

gradient will stabilize the front. The displacement process

corresponds exactly to IP with a stabilizing gradient

[9,14,16 and the saturated front widili;, has been shown

to scale likew,xB, "(*™*), Herev is the correlation length

exponent in percolation and, is the bond number indicat-

Ing thg r{;\tlo between gravity a”‘?' capillary fqr.ces.. 45°. The tubes are cylindrical with length Each tube be-

_ A similar consensus concerning the stabilization mechag, oo theith and thejth node in the lattice is assigned an
nisms when viscous forces replace gravity forces has not Y&lverage radius;; which is chosen at random in the interval
been reached. In the literature the d|spla_ce_ment has be‘fﬂld,)\zd], where 0=\;<\,<1. The randomness of the
related to IP{9,11,13, however, the scenario is more com- ra4jj represents the disorder in the system. In the following
plicated than in the gravity case. Gravity is a uniform forcehs system will be referred to as the random radii lattice.
acting on the whole system, while the viscous force is local | the second way the porous medium is constructed upon
and fluctuates due to permeability variations and fluid trapy square lattice inclined 45° where the distance between each
ping in the porous medium. One standard approach is tghtersection in the lattice is of unit length. Around each in-
separate the displacement structure into two parts. One CORsrsection we draw a circle of radids To avoid overlapping
sisting of the frontal region, and the other consisting of thegjcles the givenh must be in the interval €\<1/2. A
static structure behind. The frontal region of extent, is  node is placed at random inside each of the circles and the
assumed to behave as the spanning cluster in p?{f("a“oﬁodes inside the nearest neighbor circles are connected by
Consequently, it is assigned the permeabilkyws ™",  cylindrical tubes. Thus, as for the random radii lattice, four
wheret is the conductivity exponent in percolation. By ap- tubes meet at each node. We dkt denote the length of the
plying Darcy's law and assuming that the stabilized frontyype petween théth and jth node, and the corresponding
reaches a traveling-wave state according to Buckley—Levere];tadiusrij is defined as;; =d;;/2a. Herea is the aspect ratio
displacemenf17], the scaling of the front width is found to petween the tube length and the radius. In the simulations
behave asvs>C, “. In the literature there exist two slightly 4 =1.25 hence, the tubes are 25% longer than they are wide.
different expressions fow. In 3D Wilkinson [9] found @  |n this lattice the position of the nodes represent the disorder
=v/(1+t—B+v) where trapping of wetting fluid is as- in the system, and therefore we will refer to it as the random
sumed to be less important. Hefeis the order parameter node lattice.
exponent in percolation. Later, Bluet al.[11] suggested in While every pair of nearest neighbor nodes are separated
3D thata=v/(1+t+v) which is identical to the result of an equal distance in the random radii lattice, the distance
Lenormand 10] discussing limits of fractal patterns between between two nearest neighbor nodes vary in the random node
capillary fingering and stable displacement in 2D porous metattice. Especially, the shortest length scale, that is the mini-
dia. In the Appendix we present a simple method giving mum distance between two neighboring nodes, is less in the
=v/(1+t— B+ v) by applying percolation concepts on the random node lattice. Consequently, we are able to generate
frontal region when not considering that nonwetting fluid more narrow fronts at higher injection rates in the random
flows in strands. node lattice, than what is possible with the random radii

Recently, Xuet al. [12] used Wilkinson’s arguments and lattice. Therefore the random node lattice is preferred at high
deduced a scaling relation for the viscous pressure drops iimjection rates where a flat front is generated.
the frontal region. They proposed that the nonwetting pres- In both lattices the tubes represent the volume of both
sure dropAP,, in the front (see Fig. 1 should scale as pores and throats, and there is no volume assigned to the
AP, <AV +de"1=Alv gyer a distanceh in the direction  nodes. The liquids flow from the bottom to the top of the
of the displacement. Herél is the Euclidean dimension of lattice, and we implement periodic boundary conditions in
the space in which the front is embeddéd our casedg  the horizontal direction. The pressure difference between the
=2) andAh is assumed to be sufficiently large for scaling to bottom row and the top row defines the pressure across the
be acceptable and less tha. They also argued that the lattice. Initially, the system is filled with a wetting fluid with
pressure drop in the wetting phadd”,, must be linearly viscosity u,,. The injected fluid is nonwetting and has vis-
dependent or\h, since the displaced phase is compact. Incosity w,,=u, . The viscosity ratioM, is defined asM
Ref. [11], Blunt et al. also suggested a scaling relation for = w,,/ ity -
AP, however, in 3D they found P, Ah"" 1. This de- The capillary pressurg. between the nonwetting and
viates from the result of Xet al. whendg=3. wetting fluid in a tube is given by Young-Laplace law

The network model has been presented elsewfHsd.9
and therefore only its main features will be given here.

In the simulations we have constructed the porous me-
dium in two different ways. In the first way the porous me-
dium is represented by a square lattice of tubes oriented at
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upper and lower rows are kept fixed. The set of equations is
: (1) solved by using the conjugate gradient metfi4].
During every simulation we held the injection r&ddixed
and calculate a time dependent presshiFe across the sys-
tem. See Refd.18,19 for details on howAP and the corre-
spondingp;’s are found.

1 1
— 4 —

pC: 7 Rl R2

whereR; andR, are the principal radii of curvature of the
interface(a meniscusand vy is the interfacial tension. In a
cylindrical tube of radius whereR;=R,, Eq. (1) reduces to ) X
p.=(27/r)cosé. Here ¢ denotes the wetting angle between Having found thepi’s we calculate the volume fluxes,
the nonwetting and wetting phases, and in drainage in ~ dij» through every tube in the network, using E§). Ac-
the interval (07/2). cord!ng to 'theqij s we define a time steft, sgch that every

In the network model we treat the tubes as if they werd€NISCUS iS aIIowec_i to travel at most a maximum step length
hourglass shaped with effective radii following a smooth®Xmax, during that time step. The menisci are then moved a
function. Hence, we let the capillary pressure become a funcdistance @;; /o)At and the pressur&P and the time lapse

tion of the meniscus position in the tube and assume th@"€ recorded, before the’s are solved for the new fluid
Young-Laplace law(1) takes the form configuration. Menisci that are moved out of a tube during a

time step are spread into neighbor tubes. For details about
X
1- co{ 273)

2y
pc:T

We have run drainage simulations at different injection
rates and fluid viscosities to study the capillary pressure
variations along the invasion front. Due to the huge compu-
tational effort that is necessary, the simulations have been
limited to lattices of size 2835 and 460 nodes(Sec.
ook 1 I A). We have also run some simulations where the lattice
qj=- 0 —(AP;j— Peij)- (3)  initially was filled with nonwetting and wetting fluid accord-
Mij djj ' ing to patterns which were generated by an IP algorithm

how the menisci are moved into neighbor tubes see Refs.
. (2) [18,19.
Numerical simulations show thatx,,,, must be of order

Here O=x=d is the position of the meniscus in the tube 0.1 to calculate the variation in the capill_ary pressure when a
whered is the tube length. We assume perfect wetting i.e NEMISCUS ravels throggh a tbe. In all s!mulatmns prgsented
0=0. ’ hereAxmaxfO.l, result|.ng in gt Ieas"t ten time steps to mvagie

By letting p, vary according to Eq(2), we include the one tub_e with nonwetting fluid. This causes the computation
effect of burst dynamics into the moddl8]. This is particu- time to Increase d_ramatlcally and_ one displacement sw_nula-
larly seen at low injection rates where the invasion of non—tIon on lattices of sizes presented in tr_ns paper takes typically
wetting fluid takes place in bursts accompanied by SuddeRetween 3-15 h on a 400 MHz Pentium Il processor.
negative jumps in the pressufidaines jumps[20—22. The
detailed modeling of the capillary pressure costs computation lll. SIMULATIONS
time. However, it is necessary in order to properly simulate
the pressure behavior along the front.

The volume fluxg;; through a tube from thith to thejth
node is found from the Washburn equation for capillary flow
[23]

(Sec. Il Q. In this way, we were able to study the capillary

Herek; is the permeability of the tube§/8) ando; is the  pressure along invasion fronts on lattices of 2ED0 nodes.
cross section#r?j) of the tube w;; is the effective viscosity In every simulation AP, AP, , and the front width
given by the sum of the volume fractions of each fluid insidebetween the invading and the defending fluid, was recorded.
the tube multiplied by their respective viscosities. The presThe front was detected by running a Hoshen-Kopelman al-
sure drop across the tubeAg;; =p;—p;, wherep; andp; gorithm[25] on the lattice and recognized as the set of tubes
is the nodal pressures at nodandj, respectively. The cap- that contains a front meniscus between the nonwetting and
illary pressurep j; is the sum of the capillary pressures of wetting phase, that is, the front tubes. The front widilis
the meniscilgiven by Eq.(2)] inside the tube. A tube par- defined as the standard deviation of the vertical distances
tially filled with both liquids, is allowed to contain either one between front tubes and the average position of the front. Let
or two menisci. For a tube without menigmi ;; =0, and Eq.  h; denote the vertical distances of the front tubes above the
(3) reduces to that describing Hagen-Poiseuille flow withinlet, wherei=1, ... n; andn; is the total number of front
Mij = M OF fo. tubes. Then at a particular time, we calculatg

We assume conservation of volume flux at each node giv=[(1/n;)=;(h;—h)?]*2, whereh is the average of thh;’s.
ing AP and AP, are calculated as follows. Consider two
front menisci denoted byn and n with height h,,, and h,
above the inletbottom row at a distancé,, andl, from the
left boundary of the lattice. Assume thlat,>h,, then we
calculate the differencA Pg'"(Ah,Al)=p.—pg where Ah
The summation of runs over the nearest neighbor nodes to=h,,—h, andAl =|I,—1,]|. If insteadh,>h,,, we compute
theith node whilei runs over all nodes that do not belong to APY™(Ah,Al)=p{'—pZ whereAh=h,—h,,. We only con-
the top or bottom rows, that is, the internal nodes. sider the front tubes containing one meniscus and where the

Equations(3) and (4) constitute a set of linear equations nonwetting fluid invades the tube from below. Note also, that
which are to be solved for the nodal pressupes with the  we always take the capillary pressure of the meniscus closest
constraint that the pressures at the nodes belonging to the the inlet minus the capillary pressure of the meniscus clos-

; q;;=0. (4)
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TABLE I. Simulations performed on the random radii lattice of =~ TABLE Ill. Simulations performed on the random node lattice
size 2535 nodes andV =100 (u,,=10 P, u,=0.10 B. The of size 40<60 nodes andM =1 (u,w=myw=0.50 B. The table
table contains the number of runs at e&glandC, and the calcu- contains the number of runs at ea@hand C, and the calculated

lated wy . Wy
Q Q
Runs (cm®/min) Ca Wy Runs (cm®/min) C., Wy

30 0.050 3.%x10°4 55+0.5 10 0.050 1.6¢10°° 7515
30 0.10 7.%x10°4 4.3+0.4 10 0.10 3.x10°° 6.9+1.2
30 0.20 1.5x10°°3 3.7+04 15 0.30 9.%10°° 5.2+0.5
30 0.50 3.%x10°3 3.0+0.3 15 0.60 1.%104 4.4+0.5
30 0.80 5.%10°3 2.5+0.3 20 1.2 3.%x10°4 3.8£0.5
30 1.5 1.1x10°2 2.4+0.2 20 2.4 7.8%10°4 3.0£0.2

20 4.8 1.6¢10°3 2.4+0.2

est to the outlet. From above, we defid@ | as a function
of Ah as the average afP]"" over all pairsmn separated a cally varied by changing the injection ra@ Tables |, II,
distance Ah but different Al, ie., APy=(AP{"(Ah  and Ill list Q,C,, and the type of latticérandom radii or
=const.Al)). random nodesused in the different series. Also shown are
The capillary pressure difference in the orthogonal directhe calculated front widthwg, and the number of different
tion, AP, (parallel to the inlet as a function ofAl is de-  runs we did at eack) to obtain reliable average quantities.
fined as the average 6AP]'"| over all pairsmn with equal Figure 2 shows the calculated capillary pressure differ-
height (Ah=0) above the inlet wher! is held constant. enceA P, in the direction of the displacement as a function
Thus, in the above notation AP =(|/APT(0AI of heigh.t sepgratioﬂh. We have plotted the result"for some
=const.)). of the simulations performed on the random radii lattice of

The simulations were performed with parameters as closé>< 35 nodes withM =100 (filled symbols and for some of
as possible to the experiments performed in [R26]. In the  the random node lattices of 460 nodes withM =1 (open
random radii lattice we set the lengthof all tubes equal to  SYmMboI3. In the inset of Fig. 2 the results for highest and
1 mm and the radii of the tubes were randomly chosen in lowestC, with M =100 are plotted in a logarithmic plot and
the interval 0.0B<r<d. In the lattices with random nodes fitted to straight lines. Assuming a power law behavior, we
we chose the positions of the nodes such that the lengths §nd that atC,=3.7x10"* and M=100, APy =Ah* and
the tubes were inside the interval &8<1.8 mm. This gave «=1.0. The exponeni seems to decrease systematically
us the radii of the tubes, defined by=d/2a, where @ ~ With increasing injection rate, and &,=1.1x10 ? and
=1.25. For both types of lattices the interfacial tension wag¥! =100 our best estimate is=0.8. Similar results were

set to y=30 dyn/cm, and the fluid viscosities were 0.10 P,found from the simulations performed with viscosity
0.50 P, or 10 P. matched fluids M=1). The data points corresponding to

Ah=<1 tube length are omitted in the calculations of the

A. Capillary pressure behavior

1600
We have performed two series of simulations with viscos- ’ KV
ity ratio M =100 and one series of viscosity matched fluids, ~25
M=1. In all series the capillary numb€&r, was systemati- 1200 1 H %e g *=1.0
TABLE II. Simulations performed on the random node lattice of NE % e log,(Ah)
size 25<35 nodes andM =100 (up,=10 P, u,,=0.10 B. The % f{ %H Ly s : s
table contains the number of runs at e&gfandC,, and the cal- %, 800 | i }E vC=11x10"
culatedws. = ¥ i}" & . c,=1.5><10j
= Y §§  C=3.7x10
4 Yy ¥ iﬁ' vC=3.9x10"
Q a0 § 48 ©C=9.7x10"
Runs (cm®/min) C. Wy J k3 .,gi‘ g §,§.§‘§§ 0 C=16x10"
k $ g
-4 [ 3-8'5'!}% 35053
10 0.010 1.610 4.3+0.6 o L 22y
20 0.030 3.x10* 2.9+0.3 o ¥aEEEESoo000C .
20 0.050 5.x10 2.5-0.2 0 0 20 30
20 010 1103 21+0.2 Ah (in units of tube length)
20 0.30 3-l<10:2 1.4+0.1 FIG. 2. AP as a function ofAh for someC, with M =100
15 0.50 5.X10 1.2+01 (Table ) andM =1 (Table Ill). AP is the average of the different
15 1.0 1.0¢10 2 0.9+0.1 runs performed at eadi,, and the error bars denote the standard
10 2.0 2.1x10? 0.8£0.1 error of the mean. Inset: lgg AP)) as a function of log,(Ah) for
10 4.0 424102 0.8+0.1 C,=1.1X10"2 andC,=3.7x 10 * with M =100. The solid lines

were fitted to the curves and their slopes are giverxby
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045 -4 -3 -2 -1
b i 25 . T
& 1000 '/’ X
[ g -:' e S .
0.4 g’ |
A ~ ]
\P/< Y 21k 4
) 3= —e 0 M=100 (Table II)
035 ™ 3
% . OM=1.0 (Table TIT) |
2
ol 1 g3 1
03 s L =] 1
h-h_,_ (in units of tube length) L % 5 ]
FIG. 3. The average positigix) of the front menisci inside the 16 L
tubes as function of the menisci’s heightrelative to the bottom 5 45 -4 -35 -3 -25 -2
height of the front,,;;,. The plot shows the result from simulations log,(C)
in Table Il atC,=1.0x 10 * (solid line), 1.0x 10~2 (dotted ling,
and 1.0<10"2 (dashed ling Inset: The correspondingP,, as a FIG. 4. logdAP¢(ws)] as a function of log(C,) for the

function of Al. The lattice size was 2535, giving a maximum  simulations performed on the random node lattice wWih=100
horizontal distance\l =12.5 due to the periodic boundary condi- (top) andM =1 (bottom). The slope of the solid line in the upper
tions in the horizontal direction. The error bars denote the standarfigure is 0.15. The error bars denote the standard error in the mean.
error in the mean.

illary equilibrium giving almost no difference iix) as a

exponent in Fig. 2. At short distances we expect uncertaintiefinction of h— h,.
in the result because of the finite length of the tubes in the For the threeC,’s in Fig. 3 we have also calculated the
lattice. capillary pressure difference in the orthogonal direction,

In Fig. 2 we observe thak P increases more rapidly as AP, , as function of horizontal distanca,. The result is
function of Ah at high injection rates compared to the resultsshown in the inset of Fig. 3. Here we interpeP., as the
at low injection rates. In the plot the effect is most significanthorizontal correlations in the capillary pressure between me-
whenM =100. At an extremely low injection rate we expect Nisci at the same height. Recall thaP., contains terms
APy in Fig. 2 to approach zero and become independent dike |pc'—pc|=v(p¢ —Pg)®, wherepd' and pg denote the
Ah. In this limit the capillary pressure of the menisci along capillary pressure of two front menisgiandn, respectively.
the front are almost equdtapillary equilibrium). As seen From the inset of Fig. 3 we see that at l@y=1.0x10"*
from Fig. 2, we have not performed simulations with that(solid line) the capillary pressure of two menisci at the same
low injection rate. Instead the lowest, for M =100 and height and a distancAl<7 apart, are correlated to each
M =1, corresponds to the injection rate where no clear stgother becausa P, has not yet reached the constant plateau

bilization of the front was found due to the finite size of the (A1>7) where the capillary pressures becomes uncorrelated.
system. At short distancesAP., approaches zero, indicating that

; P . . " ighboring menisci have equal capillary pressures. At high
At higher injection rates the viscous gradient stabilizes théqe'g e )
front. The gradient results the capillary pressure of the mega_l'O>< 10°% (dashed link we observe that the correla-

nisci closest to the inlet to exceed the capillary pressure oﬁ;ons are very short. Already foAl>1AP,, reaches the

e o . . plateau and the capillary pressures of the menisci no longer
gheswgvrclliim ftl:]réhzzlgf;vg thissi:ir;;g]'Oylﬁésf:g?]'tcit]z(:i?cr'ginterfere. Thus, if we consider a narrow and a wide tube at
in’side the gt]ubes as a f?mc‘t)ion of their vertical heightela- the same height, the viscous forces are strong enough to push
tive to the bottom height of the froity,.. (x) is plotted for the nonwetting fluid through both the narrow and the wide

high, intermediate, and lo\€, for the Simulations listed in tube simultaneously. As a result, nonwetting fluid will in-
’ ' a X vade simultaneously everywhere along the front. Similar be-
Table Il. From the figure we observe that at hiGh=1.0 y y g

: - havior is observed in the other simulations listed in Tables |
X 102 (dashed ling the menisci nean,,, are placed closer

to the middle of the tube compared to the menisci ahead‘rflnd Il at highC,

Consequently, the capillary pressure of the menisci hgar
will more likely be larger than the capillary pressure of the
menisci away fromh,;, and therefore tubes neér,;, will Figure 4 shows a log-log plot oAP. taken atAh
more easily be invaded. This will eventually stabilize the=w;g, as a function ofC, for the simulations performed on
front. Remember that the tubes are hourglass shaped aride random node lattice withl =100 (Table I) andM =1
most narrow ak=0.5[see Eq(2)]. At a low injection rate, (Table IIl). In the following AP at wg is denoted as
C,=1.0x10 * (solid line), we approach the regime of cap- AP (wy). If we ignore the effect of nonwetting strands and

B. Effect of viscosity ratio on the capillary pressure
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T ! 3.2
2400 ¥, — C=16x107, M=1 ]
1 --- C=1.0x10"°, M=100
g 200 L . 3 ]
T,
§ \!\l" \L\*I\ AZ!
2 2000 f Sy 1 Y28t 1
A, i_}l\[/l %
V ‘} < o
1800 - \ - 26 | OM=100 (Table I)
\] Pl o 0 M=1.0 (Table IIT)
1600 L
0 2 4 6 24 L L L
(h=h,, )/w, -5 -4 -3 -2 -1

log,(C)
FIG. 5. (P,) in the frontal region as a function of the relative
height from the bottom of the front. The height distance is normal- FIG. 6. The logarithm of the plateau &fP., versus the loga-
ized by dividing with the saturated front widt,. The vertical  rithm of C, for M =100 (circles andM =1 (boxes corresponding
dashed lines indicate the region whéFre) is approximately linear. to simulations listed in Table Il and Table IlI, respectively. The
The error bars denote the standard error of the mean. slope of the solid line is 0.2. See also the inset of Fig. 3.

use the result presented in the Appendix on our problem, we . . .
ties the pressure drops in the nonwetting and wetting part of

h hatAP < ingAh=w, in Eq. (Al).
ave thatd P (ws) = Caws by setting Ws in Eq. (A1) the front, and is about the same, explaining the smaller cap-

Here wgxC, “ where a=v/(1+t—B+v) and k=t/v+1 . > 2 R
— Blv according to the Appendix. By combining the two glary pressure drop whem =1 than whenV =100 in Fig.

power laws we obtaim Pg(wg) = C, 1 =A*%) giving in

2D, APcH(WS)OCCaO'Zg. Let us now study the behavior afP., . Simulations

If we assume a power law behavior betwekR(w,) show thatAP;, as a function ofAl does not change much
andC,, our best respult for the exponent is 016 OSC”whsen when comparing simulations performed at eqaal with
a P ' M=1 andM=100. Especially, the constant plateau where

M =;Lf00 |n>F|g. 4. Ngte hthatAthere seems to be.an UPPeHe capillary pressures are uncorrelatsde inset of Fig. B
cutoff atC,=1.0x 10 * whereAP¢ (W) Stops growing. At has the same value. This is illustrated in Fig. 6 where we

C,=1.0x10 2 the front is typically flat and we approach : S

the minimum width due to the finite length of the tubiese Bﬁ)\;efglrm;?gl}g% grlgtev?l::ha?\f/lpjl\égrsﬁzgf‘elnlI;a Ia?r?o? rll\;hlnic

Table II)..In this limit we expect a crossover to another type (Table Ill). From the figure we observe that the plateau does

of b‘?h‘?“"".f-. ) not depend oM. As a side mark, we notice that there seems
If it is difficult to confirm any power law whei =100, to be a power law between the plateau®,, and C,

the result ofM=1 in Fig. 4, does not show any scaling .. oo ; L
behavior. Already forC,=1x10 %, APg(w,) reaches a \t/r\:glﬁihn;viesgdzlcate by the straight line in Fig. 6. The slope of

plateau or even decreilses. To explain th_e different behavior From the above discussion we draw the following conclu-
of APg(ws) when M=1 and 100, we first look at the o “consider two parallel and horizontal lines intersecting
strength of the capillary pressure drgp acrass the front an e front, and let the lines be separated a vertical distance
;econd we compare that to the magnituda 8, as a func- ws. WhenM =1 we have found that the capillary pressure
tion of C, . . (ﬁirop between the lines is small due to the equal fluid viscosi-
To study the _caplllary pressure drop we have_calculate ies (Fig. 5. However, the magnitudélateay of AP, , is
the average caplllar_y pres_sL(r‘éc> in the frontal region as a found to be the same as whéh= 100 (Fig. 6). Thus, when
function of the relative height from the bottom of the front, \; _; e relative small capillary pressure drop is annihi-
(h—hmin)/ws. The height is normalized by dividing with the lated by the magnitude of the capillary variations in the hori-

saturated front widtlwg. In the simulationgP.) was com- | directi P Thi ibl |
puted by taking the average of the capillary pressures of thé(;?]fvig:re;tfgﬁ(v&)' whles nd&siriysi na Eic:;ssz) eV\F/)I?;el(/I aw
C S. . .

front menisci at the same heigli, above the inlet. Figure 5 _ 100, the capillary variations are too small to annihilate the

shows the result for two simulations with almost eqGzal larger capillary pressure drop there, giving the increasing

. . _ _ 73
ﬁ:ﬂ d|ﬁ(jet[(re]ntM£hOne m‘["l—oé angga:i'gx 18‘3 qag:e function AP (ws). If we divide the capillary pressure drop,
) and the other wittM = andt,=1.0x (Table calculated in Fig. 5, with the plateau &fP., in Fig. 6, we

I). If we consider the middle part of the front between theg  'ih o+ the ratio is a factor three lower fof =1 than for
two vertical dashed lines in Fig. 5, we observe that the CapPf, = 100 atC.~1.0x 103
a_ . .

illary pressure drop;-wgd({P.)/dh, over a lengthw; in the
front, is higher forM = 100 than forM =1, even though the
capillary numbers are almost equal. In both simulations a
typical narrow front with a compact displacement structure We have studied the capillary pressure along the front of
developed. On average; w,d(P.)/dh must equal the dif- patterns generated by an IP algorithm with a stabilizing gra-
ference between the pressure drops taken in the nonwettirdient. The patterns were loaded into our network model, and
and wetting part of the front over a length, (see Fig. L~ the simulations were started from that point. Using this
When the nonwetting and wetting fluid have equal viscosi-method, we were able to perform displacement simulations

C. Capillary pressure on IP patterns
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log (AP )

log,(Ah)
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FIG. 8. logo(AP¢) as a function of log(Ah) for simulations

FIG. 7. One of the generated IP patterns witk0.05 on a  initiated on IP patterns on lattices of 28B00 nodes.C,=9.5

lattice of 200< 300 nodes. The pattern was loaded into our network* 10 ° andM =100. The result is averaged over four different runs
model. and the error bars denote the standard error in the mean. The slope

of the straight solid line is 1.0.

in a short period of time on patterns generated on lattices of
200x 300 nodes. The result of these simulations are based oad/2. In the IP model the distribution of;; is flat. Thus,
the assumption that the generated patterns are statisticaklyyhenrij is mapped tof;; as described above, we obtain a
equal to the structures that would have been obtained in @2 distribution of capillary pressure thresholds. However,
corresponding complete displacement simulation. since there is a one to one correspondence in the mapping

The IP algorithm was performed on the bonds in a squargeqweenf;; andp;, we can assume that the IP patterns are
lattice with the bonds oriented at 45°. Hence, the bonds corgtatistically equal to similar structures that would have been
respond to the tubes in our network model and an occupiegenerated in a full displacement simulation. The assumption
bond refers to a tube filled with nonwetting fluid. Each bO”dprovides that the displacement simulation is performed with
was assigned a random numbgy in the interval[0,1]  an appropriate injection rat®, according tog that was used
whereij denotes the bond between tite and thejth node g generate the IP patterns.
in the lattice. A stabilizing gradieng was applied on the After the IP patterns were successfully loaded into the
lattice giving an occupation threshaigl=f;; +gh;; of every  network model, we started the simulations and ran the dis-
bond([9,14]. Hereh;; denotes the height of bonflabove the  placement a limited number of time steps whii®, was
bottom row. The occupation of bonds started at the bottomecorded. The number of time steps were chosen such that
row, and new bonds were occupied until the invasion fronihe front menisci got sufficient time to adjust according to

reached the top row. There were periodic boundary condithe viscous pressure set up by the injection rate. For all four
tions in the horizontal direction. The next bond to be occu-structures we chos® =100 andQ=0.1 ml/min, giving

pied was defined as the bond with the lowest threshold valug_=9.5x 1075. This C, might be too high compared to the

from the set of empty bonds along the invasion front. Thefront widths we obtained at 0@, from simulations listed in
invasion front was found by running a Hoshen-Kopelmantaples | and II. The reason why we choose a h@Zjhis to
algorithm on the lattice. _ _ minimize computation time. Simulations show that fewer
We generated four IP patterns wigh=0.05 and different  time steps and hence, less CPU time are required to adjust
sets of random numbefs; . When the invasion front became the front menisci when a high injection rate is applied in-
well developed with trappedwetting clusters of all sizes stead of a low one. Moreover, the simulations also show that
between the size of the bonds and the front Width, the strucas |ong as the number of time steps are chosen sufficiently
tures were loaded into our network model. Figure 7 shows,arge to allow the front menisci to adjust, the exponerih
one of the generated IP patterns. APgecAh® is not sensitive on the injection rate. In the
The loading was performed by filling the tubes in the present simulations the number of time steps was 400.
network model with nonwetting and wetting fluid according " The result of the simulations is shown in Fig. 8 where we
to occupied and empty bonds in the IP lattice. Furthermorey5ye plotted log(AP,) versus logy(Ah). As for the pre-
the radiir;; of the tubes were mapped to the random numbergjoys results, we find= 1.0+0.1. The slope of the straight

fij of the bonds, by setting;;=[A;+(A2—X1)(1—fi))]d.  jine in Fig. 8 is 1.0. We have also done displacement simu-
Thus, rje[X,d,Aod], where we set the tube length |ations on one of the IP patterns @,=2x10"° with M
=1 mm, \;=0.05, andr,=1.0. =1 andM =100. These simulations were run in 1600 time

~ Above, rjj is mapped to i f;; because in the IP algo- steps and the result of those is consistent with Fig. 8.
rithm the next bond to be invaded is the one with the lowest

th_reshold valug, opposite to t_he network model,_where the IV. EEFECT OF LOOPLESS STRANDS

widest tubes will be invaded first. Note also, that in the net-

work model the invasion of nonwetting fluid is controlled by  In Ref.[12] it was argued that P =AP,,—AP,, (see
the threshold capillary pressures of the tubes. According Fig. 1). At low injection rates or when the nonwetting phase
to Eqg. (2) p;=4y/r in the middle of the tubes where is much more viscous than the wetting phaskP,,
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of the evidence that a tube filled with wetting fluid and sur-
rounded on both sides by nonwetting fluid is trapped due to
volume conservation of wetting fluid. Because of trapped
wetting fluid, the nonwetting fluid also flows in separate
strands, indicated as black tubes in Fig. 9. When the nonwet-
ting fluid percolates the system there exists only one such
strand connecting the inlet to the outlet. The dark gray tubes
connecting to the strands are dead ends where nonwetting
fluid cannot flow because of trapped wetting fluid. We note
that the evidence of trapped wetting fluid in single tubes may
easily be generalized to 3D and therefore our arguments
should be valid there too. Similar loopless structures as in
Fig. 9 were also pointed out in Ref27] for site-bond IP
with trapping and in Ref[28] for a loopless IP algorithm.
From Fig. 9 we may separate the displacement patterns
into two parts. One consists of the frontal region continu-
ously covering new tubes, and the other consists of the more

<xe
<
¢
s

static structure behind the front. The frontal region is sup-

plied by nonwetting fluid through a set of strands that con-

nects the frontal region to the inlet. When the strands ap-

W

v

C,=39x10"%, M =10

's

proach the frontal region they are more likely to split. Since
we are dealing with a square lattice, a splitting strand may
create either two or three new strands. As the strands proceed
upwards in Fig. 9, repeated splits cause the frontal region to
be completely covered by nonwetting strands.
On IP patterns with trappin®7] or without loopg28,29
the lengthl of the minimum path between two points sepa-
rated a Euclidean distand®scales likel <RPs whereDy is
the fractal dimension of the shortest path. We assume that
C,=16x10"5, M =10 the displacement pattern of the frontal region for length less
than the correlation lengtfin our casewy) is statistically
FIG. 9. Two displacement structures of simulations at High ~ equal to the IP patterns in R¢R7]. Therefore, the length of
=3.9x 10 4 (above and lowC,=1.6x 10 ° (below) before break- the nonwetting strands in the frontal region is proportional to
through of nonwetting fluid. The nonwetting fluidark gray and ~ AhPs; whereAh is some vertical length less thawn,. If we
black is injected from below and wetting fluidight gray) flows  assume that on the average every tube in the lattice has the
out along the top row. The lattice size was>80 nodes andV same mobility k;;/uij), we obtain that the fluid pressure
=1 (Table Ill). The black tubes denote the loopless strands whergyithin one strand must drop likAh* wherek=Dj. Let us
no_nwetting fluid flows and the dark gray tubes in_dicate'nonwettingnOW consider the effect on the pressure when strands split. If
fluid gnable tq flow due to trapped regions of wetting flwd. Becaqsewe assume that the strands are straighi=1) then follow-
of fluid trapping and subsequent volume conservation of wetting, 5 hath where strands split would cause the pressure to
fluid, strands of different _startlng pomts along the |nIet_can neverdrop asAh® wherex< 1. This is because the volume fluxes
connect. Note the few fluid supplying strands from the inlet to the h h the strands after a split must be less than the flux in
frontal region at lowC, compared to the case at high, . throug . . P .
the strand before it splits, due to volume conservation of
nonwetting fluid.
<APy,, giving APy ~AP,,,. Thus, if the result of Xiet al. The two effects k=Dg and k<1) predict that the pres-
[12] should be valid for our problem, we would expect to sure drop in the nonwetting phase of the frontal region,
find AP cAh* wherek=t/v+dg—1— B/v. Inserting val- APy, should scale aaP,,<Ah”, wherexk<Dg. In 2D
ues of the exponents in 21£€1.3p=4/3dz=2,8=5/36) two different values forDs have been reported¢=1.22
gives k=1.9. Our simulations clearly indicate that=1.0 [28,29 for loopless IP patterns, ands=1.14[27] for the
which is inconsistent with the proposed result in Ré@R].  single strand connecting the inlet to the outlet when nonwet-
Below we present an alternative view on the displacementing fluid percolates the system. We note that the result in
pattern from that initiated by Wilkinsoff] and used by Xu Ref.[27] is essentially equal t® ,;,=1.13[25], that is, the
et al. The alternative view is based upon the observation thafractal dimension of the minimum path in 2D percolation
nonwetting fluid flows in separate strands. where loops generally occur. Any of the above valuedXor
Figure 9 shows two typical displacement structures thatogether with the argumenk<Dg are supported by our
were obtained from simulations at low and high on the  simulations findingk=1.0+0.1.
lattice of 40<60 nodes withM =1 (Table Ill). We observe Note the different pattern of strands at high and Byvin
that the nonwetting fluiddark gray and blackgenerates Fig. 9. At low C, few strands are supplying the frontal re-
patterns containing no closed loops. That means following @ion with nonwetting fluid, and the strands split many times
path on nonwetting fluid will never bring us back to the before the whole front is covered. At higdy, the horizontal
starting point. The loopless structure is a direct consequenadistance between each strand in the static structure is much
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shorter, and only a few splits are required to cover the front. 2 . . . -
Moreover, we observe that at higb, the length of indi-
vidual strands in the front approaches the minimum length
due to the tubes. In this limit we may treat the strands in the
front as straight linedi.e., Dg=1) causingk<1. This is
indeed supported by numerical results, finding tkatle-
creases from about 1.0 to 0.8 when increadihg(see Fig.

@ Experiments
< Simulations

1.5

log,o(w,)

2). . 2 >

Another important issue, arising at lo@,, is the effect 0.5 ‘\\ .§§ s |
of bursts on the capillary pressure. A burst occurs when a s
meniscus along the front becomes unstable and nonwetting . . . o~
fluid abruptly covers new tubel22]. The strand where a 0_7 6 -5 4 3
burst initiates experiences a much higher fluid transport rela- log,(C,)

tive to strands far away. Describing the pressure behavior

between the strand of the burst and the rest of the front is FIG. 10. log(w,) as a function of logy(C,) for experiments

nontrivial. However, simulations show that even duringfrom [26] and simulations on the lattice of 4060 nodes(Table

bursts we find that\ P increases linearly witiAh. [11). For both experiments and simulatiokts= 1. The slope of the
The indication thatc=1.0 may influence the scaling be- solid and dashed line is 0.6 and—0.3, respectively.

havior of wg as a function ofC,. Assuming Darcy flow

where the pressure drop depends linearly on the injection

) ~ P -~ gested valuer=v/(1+ vk)=0.57 from Sec. IV. The simu-
rate, we conjecture thal Pgj=C,Ah*. Here APy denotes |5i0ng show a different behavior and they seem toafit

the capillary pressure difference over a heiglit when the =0.3+0.1, according to the dashed line in Fig. 10. The

front is stationary. That meandPy excludes situations simulations performed on the lattices of %285 nodes

where nonwetting fluid rapidly invades new tubes due to(Tables | and I) also givea=0.3.

local instabilities(i.e., bursts. The above conjecture is sup-  Even though the overlap between experimental and nu-

ported by simulations showing that in the lo@, regime  merical data in Fig. 10 is poor we suggest that the different

Aﬁ’cuocCaAh" wherex=1.0. Note, that\ ﬁ’cHa#APC“ in Fig.  behavior of the experimentat C,<1.0x 10 °) and simula-

2, since the latter includes both stable situations and burstgions (at C,=1.0X10 °) might be due to an expected
At sufficiently low C, the displacement may be mapped change inex at highC,. According to the discussion in Sec.

to percolation givingA Iscuocf—fcocg’ll” [16,9,14. Herefis IV it is not _clear_ if the_ percolation approach g_iving

the occupation probability of the bonds, is the percolation = ¥/(1+ v«) is valid for highC,. The different scaling be-

threshold, and:ewg is the correlation length. By combining havior observed in Fig. 10 might also be caused by the small

R . . - — _5 -
the above relations foA P we obtainw,xC;“ where system size of the simulations. &,=1.0X10"> numerical
— /(1 +vx). In 2D v=4/3 and insertingc=1.0 givesa simulations show that the front width becomes bounded by

~0.57 the system size, and therefore we are not able to observe a
e possiblea= v/(1+ vk) regime. We stress that more simula-

In Sec. Il A we found that at higiC, the nonwetting tions on larger systems and at low@y are required in order
fluid invades simultaneously everywhere along the front. ger sy 4 d

Hence, the front never reaches a stationary state becauseoI ta'lnobﬁtn?[irl ct)r\wlgrzlairt) igertgf de?osgpal\’,{,agﬁnsciﬂﬁSgi%ign;ﬁnttﬁén
rapidly succeeding local instabilities. This is supported by 9. 10. ' y

. . . N i correcta.
simulations showing a crossover &P to a nonlinear de-

i As a side remark, we note that our simulations giving
pendency orC,. Consequently, the above mapping o Per-_q 3 are in agreement with numerical work in RE£2)].

colation might no longer be valid and we expect another tYPerheir calculations ofv, were done folC,, between 10° and
of functional behavior betweews and C, in the highCa 13-4 ¢ginciding with our region of simulations in Fig. 10.
regime. According to Wilkinson[9] a=v/(1+t— B+ v) and by in-
serting values of the exponents in 2D we obtair0.38.
This is also within the uncertainties of our simulation results.
V. COMPARISON WITH EXPERIMENTS However, we emphasize that this might as well be a coinci-
Fretteet al. [26] performed two phase drainage displace-dence rat_her than evidence, becau_se WiII_<inson’s f[heory does
ment experiments in a 2D porous medium with viscositynOt take into account that nonwetting fluid flows in strands
matched fluids i1 =1). They reported on the stabilization of 2/ong the front. _ _
the front and measured the saturated front width as a . A somewhat d|fferent process, but very interesting result,
function of C,. For all our simulations except those per- IS presgnted by Shaw n RQBO]' He measured the width of
formed on the IP patterns, we have calculatgd In Fig. 10 the dr%l?fggrlont In a quasi-2D porous system and found that
we have plottedv as a function ofC, in a logarithmic plot ~ Ws*Vt ™ " Hereuy is the average front velocity. Quite
for the simulations in Table lliopen diamondstogether ~€Cently, this has been compared to theory in Reg].
with the experimental data of Fretét al. (filled circles.
In Ref. [26], their best estimate of the exponentwhen
assuming a power laws=C, “ was «=0.6x0.2, indicated We have reported on the stabilization mechanisms of the
by the solid line in Fig. 10. This is consistent with the sug-front in drainage displacement going from low to high injec-

VI. CONCLUSION
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tion rates. The stabilization process was studied by using & g/v in the power lawAP¢«Ah* when not considering
network model simulating the viscous and capillary pressuréhat nonwetting fluid flows through strands. The calculations
buildup in the fluids during the displacements. We haveare carried out in two dimension, however, the extension to
found that the capillary pressure different®, along the three dimensions is straightforward.

front varies almost linearly with the distandeh, in the di- Let us consider a piece of the nonwetting phase of size
rection of the displacement. We conclude from simulationsAh in the frontal region. We assume thaP vary as

thatAP < Ah* where our best estimate is=1.0=0.1. This

result supports the arguments showing D, whereDy is APgxvAh*, (A1)

the fractal dimension of the loopless strands characterizing

the displacement pattern. The evidence that nonwetting fluidvherey is the average fluid velocity in the pores. Moreover,
flows in loopless strands along the front are not considered ilve assume that the front has reached a steady state and that
earlier proposed theorig9-12. Hence, we conclude that the structure of the front is statistically equal to the front of
they are not compatible with drainage when nonwettingan invasion percolation pattern. This assumption provides

strands dominate the displacement process. that Ah is sufficiently large for the percolation concept to
Using the evidence that=1.0, we conjecture that the apply but less than the front widih.
scaling of the front widthwg as a function ofC, might alter The average nonwetting pore fluid velocity in the re-

from earlier suggestions in Ref®,11,13. By mapping our  gion of sizeAh, is given by Darcy’s law

problem to percolation we findvs>xC,“ where a=»/(1

+vk). The result is consistent with experiments performed 1k AP

by Fretteet al. [26]. Unfortunately, due to the small system v= g; “Ah (A2)
sizes we are not able to confirm this scaling behavior by our

simulations. We emphasize that a more stringent testvon
should include simulations on larger systems and lo@gr

thaln p[j%;?nte;j Ege‘ h lculated th i permeability of the frontal region. According to percolation
n adadition oA F we have caicuiated e capiiiary pres- y,q groneg region is fractal, with fractal dimensidh=d
sure variations along the front in the direction parallel to the Blv, giving

inlet, AP., . Qualitatively, we have shown tha&P., is a
good indicator on whether the capillary pressures of the me- g

o . e Ahd—8lv
nisci along the front are all equétapillary equilibrium or Soc —Ah- Al (A3)
fluctuating due to the viscous forces. When the capillary Ah ’
fluctuations are strong, we do not expect percolation to be a
proper model for the displacement process.

HereSis the saturation of the nonwetting phase, that is, the
volume fraction where nonwetting fluid can flow, akis the
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By inserting the expressions f& k, andAP into Eq.

(A2) we find the exponent=1+t/v— B/v. The exponeni
follows by settingAh=wg and replaceAP in Eq. (A1)

Below we show how to deduce=v/(1+t—B+v) in  with the power lawwsxéxAP". Here¢ denote the corre-
wexC, “ and find the corresponding exponext1+t/v  lation length in percolation.
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